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depends only on a certain subset of the new parameters. We then review
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Q In this paper we consider use of some special log-linear models and

Martin and Bradley (1972). We first define these models, called log-

difference models, and show that the minimum risk classification rule

ﬁinimﬁiﬁéiestimation, in particﬁl;rAiﬁe mininunﬁ\g)estimator, the approxi-
mate minimum éﬂestimator, and their existence properties. Two examples
are worked. The first involves detergent preference and illustrates how
extensions to the case in which not all variables are dichotomous

may be obtained through the use of orthogonal polynomials.

The second example involves infant hypoxic trauma, and many cells are
empty. The existence conditions are used to find a model for which esti-

mates of cell frequencies exist and are in good agreement with the ob-

served data.r::\\-
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1. Introduction

This paper serves the dual purposes of extending the classification
problem considered by Martin and Bradley (1972), and of illustrating the
uses of minimum & estimation (Redman, 1981).

Martin and Bradley (hereafter denoted MB) consider the problem of
classifying individuals from L populations, n‘l), vees n(L), into J cate-
gories, Cl, ceny CJ, on the basis of a random vector Z which consists of
I dichotomous variates. They reparameterize the 2I possible state proba-

bilities as

B = apn e, 21, e}

where n(l)(g) denotes the probability of state z for the zth population,
#(z) denotes the probability of state z for a well-defined composite popu-
lation, and h(g(L), z) is expressed in terms of 2I orthogonal polynomials,
the coefficients in g(l) being specific to the 2th population. Models
arise through the approximation of h(g(l), z) in (1) by a set of low-order
polynomial terms, hs(gFl), z). Thus, models for "(2)(5) are of the form

B =r@n +n M, 9. @

In this paper we generalize the problem. We assume that the various
levels or categories for the I variates define k states, which are labeled
consecutively. Thus, while MB define cells in their tables by an I-vector
E. we simply take Z to be a varisble which may take on values 1, ..., k.

In Section 2 we propose use of a model, called the log-difference
model, in the classification problem. As with the difference model of




MB, the log-difference model features some parameters that are general to
all L populations and some that are specific to individual populations.

In Section 3 we review the classification problem in detail. In
particular the minimum risk classification rule is shown to depend on
those parameters specific to individual populations only.

in Section 4 the minimum 8 and approximate minimum & estimation proce-
dures are introduced. These were developed due to the lack of convenient
conditions for the existence of maximum likelihood estimates in sparse data
situations. Convenient ccnditions for the minimum § estimator have been
developed and are stated here. The new estimators have been shown to be
asymptotically equivalent to the maximum likelihood estimator, so should
yield good results when sample sizes are large. Full details may be
found in Redman (1981).

Examples are given in Sections 5 and 6. The first is designed to
illustrate the use of the log-difference model when one of the variates
has ordered categories. The sample size is large, and the maximum likeli-
hood, minimum § and approximate minimum § estimates are nearly equal. In
the second example data are sparse, and the conditions stated in Section 4

are used to find an adequate model for which a minimum 6 estimate exists.

2. The Log-Difference Model

Before proceeding with the development of the log-difference model,
it is necessary to introduce some notation. The notation is similar to
that used in Redman (1981), but is somewhat simpler due to the structure
necessary in the classification problem. Throughout, we consider two

sampling situations: the independent samples case, in which independent




3
samples of size N(‘) are available from each population, and the single
sanple case, in vhich the data arise f{ron a single sample of size ' from
all L populations. (/e shall use an index s = L for thc indenendent samples
case and s = 1 for the single sample case.
Let pn be the random (kL)-vector whose elements denote the number of
observations which fall in each of the k cells of the L populations.

Thus p's= {[n(l)]', cees [n(L)]'}, where

™ = n®, L, een,

and ngz) denotes the number of observations for state i of the zth popu-

lation. In the independent samples case, we assume the multinomial

distribution,
(%) (W (V. _(®) K w
B v MLt N, >0, §ow Y =2, 2=, L, L
i=1

and define p' = [[g[l)]', cees [R(LO]'] through p§z) = ngz)/N(z). In the

single sample case, we assume

Lk
pamelN, 5, 2= (M), L E@rn W0 § T o e
- = - 1 =1 i=1 1

with p Note that, in the independent samples case,

(2) = ngz)/N.

i
s=1L, ngz) is interpreted as the probability of state i for population £,

and, in the single sample case, s = 1, as the joint probability of state i

and population £.

In an analogous fashion, we defins y and x(z), £=1, ..., L, through

yiz) = log nil), i=1, ..., k. A log-linear model is specified by m

orthonormal constraints on y, Bix = 9,, vhere Elﬁ(s) * Qs And A(s) = 1., |
L 2

when s = 1 and A(s) = when s = L,

"L
Klgixt




We now describe a two-stage reparameterization of Y vwhich is useful
in the classification problem. In the first stage, (L + 1) sets of k
parameters are defined; one set is general to all populations, and each
of the others is specific to a given population. The set specific to
population L is redundant in that it is a linear function of the other
sets and is not considered further. Each of the remaining L sets is
further reparameterized in the second stage. The motivation behind this
second reparameterization is in definition of the log-difference model
in which certain linear functions of this final set may be assumed to
be zero. This permits a reduction in the number of independent parameters
to be estimated and is of particular importance when data are sparse.

()

Define k-vectors Zg’ general parameters, and A" °, parameters

specific to population £, through

- Yy * 2™, e, 1, (3)
and
L
(2)
- Y /L. (4)
w2

Since (3) and (4) imply that

L L L
TaW = T4y® . Ty =0,
=1 ta1 g=1~8

L-1

=1

and we need only consider Ig and y(z), L=1, ..., L-1,

it i : - - e s e bladhaiuans



H

The vectors zg and A(z), £=1, ..., L-1, may be further decomposed

by means of

Yo = Ko

RO

~ - lﬁ,ﬂ(z)' L= 1'

cee, L-1, (7

where X,, ..., X;_, are k x k orthonormal matrices and the k-vectors y
and g(z), £=1, ..., L-1, are new general and specific parameters re-
spectively. In a log-difference model, m independent linear functions
of these parameters may be specified to be zero so long as they are con-
structed in conformity with the linear constraints of a log-linear model
as previously defined.

For a log-linear model with constraints B,y = g, it is necessary

that glé = mes’ Suppose we wish to specify

5
50
B} . =0 This is equivalent to
L-1
Lg( )
By =% ®
where
%o @ -+ 2 ] "(1/1.);,k e (/DL /WL
QX .- 0 (L-1)/L L, ... (-1/L)1, (-1/L)
g [*H L k L )

CULL . @D/ CULE
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so that B} Q is equivalent to B and it is necessary to choose B such that

1

BiQA(s) = Q > (10)

In practice one may often take

LeX=eenty, =X

Use of orthogonal polynomials in the specification of the matrix X has

preven useful, although we leave the way open for other choices through
50, ceny LLPI.
orthogonal polynomials are used, elements of v and g(l), L=1, ..., L-1,

the use of arbitrary orthonormal matrices, If appropriate J
may be given interpretations, for example, analogous to linear, quadratic,
and higher-order trend terms and their interactions in the analysis of
variance (Haberman, 1974), and selection of transformed parameters to

be taken to be zero for model simplification may proceed as in that

situation.

3. C(Classification Procedures

We formalize the classification problem of Section 1. Following
Martin and Bradley (1972), its essential features are:

(i) There are a finite number L of exclusive and exhaustive popu-
lations, n(l), cees H(L), from which the individual to be classified
may arise.

(ii) There are a finite number J of exclusive and exhaustive
categories Cl’ ceey CJ into which individuals are to be classified.

(iii) Samples from each population, or a single sample from all

populations, are available.




(iv) An unknown individual U ¢ 1*) with probability p(n(*)),

L =1, ..., L, is to be classified.

(v) The classification of U is to be made on the basis of its
belonging to cell i*.

(vi) The loss entailed by classification of U ¢ Cj' when U ¢ n(‘)
is L§l), j=1, ..., J,2=1, ..., L. These losses are taken to be
finite, and may be taken to be nonnegative without loss of generality.
Conventionally, correct classification is indicated by zero loss.

The minimum risk classification rule is: Classify U e Cj* if
Rj,(i*) is a minimum of (Rj(i'), j=1, ..., J}, where

L

Ry(0) = ] L§‘)p(n(‘))p(i|n(‘))/p(i)
g=1

{
L
‘ . zzngz)P(i, 1®)y/p(1)

L

- L§“’p(n(“)|i), j=1, ...,3, i1, ..., k,
2=1

P(i) denotes the probability of state i, P(i, n(”)) denotes the joint

probability of state i and population ‘¥, and p(i|1™®)) and ¥ }4)

denote conditional probabilities. If the minimum is not unique, one may

choose any C., such that j* corresponds with any one of the minimizing

j‘
values of Rj(i') and the risk is not affected. The minimum risk is

k
Toin = L P(1) min{R (1)}

min g0 y )

a1

(12)




The classification rule above may be simplified somewhat through the

use of (3). In the single sample case, Rj(i) in (11) may be expressed as

L
R, (1) = ) tPexp v(z)/P(i)
j g J

- 1P vgy exp 8{/P (1)

coxp v § LPexp s ). (13
gilgsy I

Clearly the minimum risk classification rule depends solely on the t¢
in brackets in (13), an expression involving log-difference paramete
specific to each population only.

Similarly, when independent samples from each population are available,

Rj(i) may be expressed as

L
R,(1) = ) LPexp yPra®Mye)
J g=1

= J ng)exp Ygi ©XP Agl)P(n(z))/P(i)

= exp v Z L(‘)exp A(‘)p(n(“’) /P(i). (14)
8ilgay 3

This time the minimum risk classification rule depends on the term in
brackets in (14), a slightly more complicated expression than (13), in
that the probabilities P(H(l)) are involved. Again the log-difference

parameters general to all populations are not involved.

e - - : g —




In practice, estimated classification rules are needed. Log-difference
modelling will be used and estimators of Agz) used in place of Agz) in (13)

and (14).

4. Minimum § and Approximate Minimum § Estimators

In this section, we find minimum & and approximate minimum & estimators
following the general procedures of Redman (1981). We also state conditions
which are of use for determination of the existence of a minimum & estimator
in sparse data situations, These conditions will be used in the second
example of Section 6.

The minimum § estimator of y is that point y in

k
PR ={y: By =0, tepy P =1, 2=1, .., L s=1,0r
~ i=]
Lok ) ) o
Z Z exp Y. = 1, s = 1}, which minimizes
2=1 isl 1
L k
6(x; n) = 221 .zlngz)(log pgz) - Y§2))2' The function § is a transformed
=] i=

x2-like function, whose use is motivated by the linear nature of some of the
constraints on y expressed in the parameter space r(gl). The minimum 6

estimate may be found through solution of the following system of equations:

By(N(logp - ¥) - y(] = Gy » Bix=0,
and (15)
k
Z exp ygl) =1, ¢=1, ..., L, . =L
i=1
or
L k
Z Z exp ygz) =1, s = 1.
2=1 i=1

Here, 52 is an orthocomplement of gl, that is,




B | iR ’

B|le, e

N is the diagonal matrix with entries n{l). coes n{l), cees n{l‘), ceen n{l‘),

and [y, = @, o P, e Y, L P W,

»

ygz)(x) = exp 75') E ngl)(loz pg') - vg‘)). ssL
and
y ) = exp v zzl i n{(10g p(* - yMy, s -1,
i=1, ..., %k, 2=1, ..., L.
The approximate minimum & method is an ad hoc variant of the minimum
§ method. The approximate minimum & estimator is denoted by ia' is easy
to compute, and may serve as an initial value for iterative solution of
equations (15).
Two steps are required for the calculation of ia' The first involves
minimization of  6(y;n) over {y: Byx = 0 }. This is the classic minimi-

zation of a weighted sum of squares function over an affine space and the

set of vectors which yield the desired minimum is given by

Pe (3 § = 312 N85) B N log p
- k-m
+ (L - (B,NBY) (B NB3))z], 2 € EX™), -

Note that (gzugé)' is a generalized inverse of B,NB;. When B,NB, is non-

singular,
y = gz(BzNBZ) B,N log p. (16)

The second step in calculation of ia adjusts i so the resultant esti-

mated probabilities sum to one. Thus
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iagl) = y :{&) - cl(i)’ i=1, ..., k, t=1, ..., L,

Y e 5
Cz(z)- z Opr ,I-A co ey L,S.L.
i=]
or

z(x) =c(}) = 2 Z exp y(z), s =1,

Due to the nature of the set I, an approximate minimm § estimator always
exists, and the estimator is unique if and only if gzugé is nonsingular.
The set ' is also intimately related to the existence of the minimm

§ estimator. Let

k
f'i:{i: ief, 2 expygz)acl, =1, ,L, s= L, Z Z exp yi 'C,S'l},

i=1 R=1 i=1
where
c, = infl{c, (Y)} = inf: § exp( (2)) g =1 L,s=1L
I R T
or -

c = 1ﬁf{c(y)} = 1nf{ z 2 exp(ycz))}, s =1,
1er g=] is=l

The set I'* is either empty or a sinrleton. The following conlditions have

been obtained by Redman (1981):

Condition 1: A minimum § estimator exists if andonly if F* is a singleton.

Condition 2: 1If (B 5) is nonsingular, then a minimum § estimator

exists.

Condition 3: If all cells contain at least one observation, then a

minimum § estimator exists,

We conclude this section with the remark that, whenever a minimum § estimator

exists, it is unique.




S. Detergent Preference

Our first example involves detergent preference. The data are in

Table 1, were collected in a single sample, s = 1, by Ries and Smith (1963),

and have been previously analyzed by Goodman (1971), Bishop, Feinberg, :
and Holland (1975), and others. 1
The data result from an experiment in which 1008 people expressed
their preferences for two brands of detergent, X and M. They responded
also to three questions corresponding to three variables:
1. Previous experience with brand M: yes or no,
2. Water hardness: soft, medium, or hard,
and
3. VWater temperature: high or low.

1)

Respondents were taken to represent two populations, n( : consumers who

n(z): consumers who prefer M. We assume that the levels

prefer X, and

of variable 2 are ordered and equally spaced, and we take 50 = 51 with

orthonormal columns proportional to the columns of the following matrix:

[ 1 11 111111111

111 1-111-1-1-1-1-1

; 110-210-210-20-2

; 1 10-2-1 0-2-10 20 2

; 1 1-111-111-11-11

g 1 1-1 1-1-1 1+11-1 1-1

1-1 1 1 1-1-1-11104-1-1

! 1-1 1 1-1-1-11-1-111

' 1-1 0-2 10 2-10-20 2

1-1 0-2-1 0 210 2 0-2

- 1-1-1111-1-1-11 121
- 1-1-1 1-1 1-1 1 1-1-1 1j.

This matrix has been constructed with the aid of the orthogonal poly-

d nomials of Fisher and Yates (1953). Interpretations which may be given

1)

to the elements of v and u are given in Table 2,
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Table 2. -- Interpretations Which May Be Given to
Parameters in Detergent Example

General Specific Interpretation
vy u{l) overall mean
vy ugl) main effect, var. 1
vy ugl) linear term, main effect, var. 2
A ugl) quadratic term, main effect, var. 2
vg uél) main effect, var. 3
Ve uél) var. 1 by linear term var. 2 interaction
Vg ugl) var. 1 by quadratic term var. 2 interaction
Vg ugl) var. 1 by var. 3 interaction
Vg uél) linear term var. 2 by var. 3 interaction
0 u{é) quadratic term var. 2 by var. 3 interaction
20 ufi) var. 1 by linear term var. 2 by var. 3 interaction
vi2 u}é) var. 1 by quadratic term var. 2 by var. 3 interaction
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The authors cited have fitted a variety of models to these data. We
use the model in which

0, 0) = V!

N'= (vl, sevs Vg, 0, 0, 0, vg, v ¥

10’

p®My - w®, W, 0, (18)

because the previous work suggests that this model should fit the data
reasonably well and because it involves few parameters, particularly those
specific to population n(l).

The estimated frequencies derived from i, ia' and i are reported in
Table 1. Computation of i was effected through use of CONTAB (Zahn, 1974),
and computation of i‘ through use of (16) and (17). Computation of i was
effected through solution of equations (15) by means of Newton's Method,
{Acton, 1970), with za' the initial value. The left-hand side of each of
equations (15), evaluated at the first iterate, was less than 10'7, so the
first iterate was taken to be the minimum § estimator.

The goodness-of-fit statistics are xz(i; n) = 16.7265, where xz(x; n)
is the usual Pearson statistic, and s(ia; n) = §(y; n) = 16.5904. Under
the model, all three statistics are approximately distributed as xfs
(Redman, 1981). The values of these statistics are only slightly above
expectation, indicating good fits of the model by all three methods.

For classification purposes we take populations n(l) and n(2) to
eoincide with categories C, and C, and L{1) = 1{¥) 0, 1P . L) -1
For these losses, the classification rule is simplified. Now, we have,
from (13),
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2
R a [ 1Mexp ald) = exp 8D = 1/exp 2D,

i=]

and

2
R,(i% a ] Lgn)exp Agf) = exp Agf),
R=]1
the constants of proportiocnality being the same. The classification rule
reduces to: Classify U e ¢ if Agi) 20, and U € c, otherwise. For the

model used here, we have assumed
(1)
¥

2D L[ WD
%0

and the minimum &6 estimates of u(l) and u(l) are ﬁ(l) = 0.0043, ﬁ(l) = -0.7062.
1 2 1 2
Thus, the estimated classification rule is: Classify U ¢ C1 if

5, « (0.0083 X, - 0.7062 X 4ug) 2 O, where X

1i*1
element of X, and classify U e C, otherwise.

1ij denotes the (i, j)-

Similarly, the minimm risk in (12) reduces to the minimum probability

of misclassification,

k
Tatn = L p(inintP M |1y, paa® |11,

To estimate this probability, we simplify
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k
fagn = L PCOR(PE, 1Wyrecn), pet, 1P)y/pad

k
« ¥ wintpd, 1), e, 133, (19)

i=1
and make use of Table 1, from which estimates of P(i, 1*)) may be obtained.

For instance, for state 1 the minimum § estimators are
7 w5 = B, 1) = 21.35/1008 = 0.021,
and

73 w5, = pa, 1) « 28.43/1008 = 0.028.

The estimated contribution to (19) for i = 1 is 0.021. The estimate of
Tpip 15 7-428 for y and ia' it is 0.429 for i, and, for all three estimators,
the proportion of individuals in the study that would be misclassified is
0.429. These figures compare favorably with the estimate of the probability
of misclassification 7.421 based on the full model but are by no means
impressive.

One may even wonder if inclusion of ugl) and u;l) in the model aids in

the fit of the data. To examine this, we assume y = Yo and test
. )
HO' [E ] = 212,
against

(D1, o.M .
He M) e i, WD, g0y,

Under H,, 6(?1; n - c(i; n) is approximately distributed as xg, where ?1

is the minimum 6§ estimate of i under Ho. We obtain 20.6404 for this statistic,
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a value which indicates rejection of the null hypothesis and suggests that
inclusion of u{!) and u{!) significantly improves the fit of the model to
the data. This test demonstrates that the two populations are indeed dif-
ferent under the restricted model defined in (18). Classification should

be possible.

6. Hypoxic Trauma

The second example involves data used by MB1 and are concerned
with history and behavior of infants following hypoxic traumaz. For these

data s = 1, I = 4; all variables are dichotomous:
1. race, white or nonwhite,
2. suggestive or nonsuggestive medical history of mother,
3. infant first breath before or after five seconds,
4. infant first cry before or after 30 seconds.

W,

The populations are Il Infants with Apgar scoress of seven or below and

n(z): Infants with normal Apgar scores. The data are in Table 3.
We take %= 51 with orthonormal columns proportional to the columns

of the following matrix:

1 1 11 1111111111171

111 1-1 11+ 1-1-11-1-1-1-1

111+ 11-11-1-1-1-11-1-11

11 1-1-<1 1-1-1-111-1-1111

1 1-111-111-111-1-11-1-1

1 1-11-1-1 1-1-1-1-1-11-111

1 1-1-11-1-111-1-11-1-111

1 1-1-1-1-1-1-1111111-1-1

1111 1-1-1-1 11 1-1-1-110421

: 1-111-1-1-111-1-1-111-11
11 1<11-1 1-1-1-1-11-11-11

1-1 1-1-1-111-11111-11-2

- 1-1-1 11 1-1-1-1111 1-1-11
1-1-11-11-1 1-1-1-1 1-111¢=-

, 1-1-1-1111-1 1-1-1-1111-1
' 1-1-1-1-1 1111 1 1-1-1-121 1

IMB reference unpublished data of Joan C. Martin and Celia Lamver,
Duke University.

znypoxic trauna: Damage to an infant during or shortly after birth

caused by oxygen deficiency.

3Apgar score: An index of the level of physiological functioning based
on symptoms of the infant observed shortly after birth. See Apgar (1953).
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This matrix has been derived from MB (Equation 2.1). The parameter
associated with the first column of this matrix may be interpreted as an
overall mean, those associated with columns 2-5 may be interpreted as
main effects of variables 1-4 respectively, and parameters associated
with succeeding columns as interactions.

Due to the many empty cells in this data set, the possibility that
minimum § estimators do not exist for many models is of concern. Therefore,
a preliminary study to identify a reasonable model for which a minimum §
estimator exists had to be undertaken. The results of this preliminary
examination of the data are contained in Table 4. In step 1, it was
determined that a minimum § estimator does not exist for the model in

1)

which elements of y and u corresponding to main effects were included
{Moc'21 1). 1If ugl) is deleted from Model 1, a minimum § estimator does
exist (Model 2). Elements ufl), ugl), ugl), and ugl) and no other specific
terms are included in succeeding models. The existence of a minimum &
estimator for Model 3, which involves elements of y corresponding to main
effects and first-order interactions, was checked next. No minimum §
estimator exists for this model, and so, in the final step, the existences
of minimum 6 estimators for models in which general main effects and
three first-order interaction terms involving one of the variables were
checked (Models 4-7, variables 1-4).

Minimum § estimators exist for Models 2, 4, and 7. Approximate minimum
§ estimators were calculated for these models and the values of the cor-
responding G(is; n) are given in Table 4. The value of G(ia; n) for Model 7
appears to be substantially lower than for the other models and so Model 7

was selected as our model.
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Computation of y was again effected iteratively by means of Newton's
Method with use of ia as an initial estimate. After four iterations,
8(y; R) = 3.2967 was obtained. Estimated frequencies based on y and Ya
are given in Table 3. With the exception of a few zero cells, the observed
and expected frequencies appear to agree rather well. Observed and expected
frequencies agree in the zero cells more closely for the MB model, but it
should be noted that the MB model uses nine more parameters than the present
model.

Again we take Lfl) = ng) =0, L{z) = L;l) = 1, As in the previous
example, the classification rule depends only on Agf), and the probability

of misclassification is given by (19). For Model 7,

[~ 3 ]
X

and 5! = 1.0508, 5" « -0.7479, agl) = 0.8926, and aél) .« 2.3272.
Thus, the estimated classification rule is: Classify U ¢ Cl if

800 = (1.0508 x ;4) - 0.7479 x,,, + 0.8926 x4y *+ 2.3272 x;,0) 2 0,

1i*1 i*2 1i*3
and classify U ¢ C2 otherwise. The estimates of the probability of mis-
classification are 0.375 for ia’ and 0.377 for i, and, for both estimators,

the proportion of individuals that would be misclassified is 0.379. This

proportion matches the proportion misclassified for the MB model.

~ A ATIS SRS 2 A
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